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FINITE DIFFERENCE SOLUTION OF LAPLACE’S EQUATION

I. INTRODUCTION

The potentials relationship to the charge distribution can be expressed either in differential or
integral form
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The differential form is usually solved by approximating the ∇  operator by finite differences.
The integral equation is solved by approximating ρ  by a series with unknown expansion
coefficients, and then applying the boundary conditions to find the constants.

II. EXAMPLE: POTENTIAL IN A TROUGH

1. Finite Difference Formulation

Consider a two-dimensional problem such as an infinitely long trough with the cross section
shown below.  Three sides are grounded and the fourth is at a potential Vo .
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For a two-dimensional geometry Laplace’s equation becomes

∇ 2 V (x, y) =
∂ 2

∂x2 +
∂2

∂y2
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To apply the finite difference approximation the source free region inside of the trough is divided
into cells, in this case shown as square.  Each node inside is the center of a five-point cross of
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nodes with potentials Vc,V1,V2,V3,and V4, Using the central difference method the first and
second derivatives are represented by the following finite differences:
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Similarly for the y  component

d2V
dy2 ≈

V3 − 2Vc + V4
h2

and Laplace’s equation becomes

∇ 2V ≈
V1 + V2 + V3 + V4 − 4Vc

h2 = 0

In order to find the potential everywhere inside of the trough, this equation must be applied at all
of the interior nodes.  For convenience the nodes are renumbered with index m  along the x  axis
and n  along the y  axis.  The number of cells is

Nx =
Lx
h

+1 Ny =
Ly
h

+1
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and the total number of nodes inside of the trough is N = (Nx − 2)(Ny − 2) .  The interior nodes
run from m = 2 to m = Nx  along the x  axis and from n = 2  to n = Ny  along the y  axis.   At
node (m,n)  Laplace’s equation is

1
h2 V (m +1, n) + V(m −1,n) + V(m,n +1) + V (m,n −1) − 4V (m,n)[ ] = 0
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2. Boundary Conditions

The boundary conditions are now imposed:

1. V(m,n) = 0 if m = 1            and 1 ≤ n ≤ Ny (left wall)
m = Nx         and 1 ≤ n ≤ Ny (right wall)
n = 1            and 1 ≤ m ≤ Nx (bottom)

2. V(m,n) = Vo if n = Ny          and 1 ≤ m ≤ Nx (top)

Next, number the nodes sequentially using a single index

Vk ≡ V(m,n) where k = (m -1) + (Nx − 2)(n − 2) for 1 ≤ k ≤ N

There are N  equations as follows:
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The equations are rewritten with the excitation terms Vo  on the right-hand sides.  For example,
equation number N ,
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3. Matrix Equation

The N  equations can be cast into matrix form:

Node
k

V1
(2,2)

V2
(3,2)

V3
(4,2)

�
VN x −2
(Nx −1,2)

VNx −1
(2,3)

VNx

(3,3)
�

VN−1 VN

1 -4 1 0
�

0 1 0
�

0 0
2 1 -4 1

�
0 0 1

�
0 0

��� ��� ��� ��� � �� �� �� � ��� ��

N 0 0 0
�

0 0 0
�

1 -4

The entries in the table are defined as the matrix Q.  The boundary excitation vector is

�

E =

0
0
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and the vector of unknown voltages
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so that QV=E.  Solve for the potentials by inverting Q and pre-multiplying

V = Q−1E

4. Sample Data

Result for a sample calculation follows: Lx = 1 m, Ly = 2 m, h = 0.0625 m, Nx = 20 , Ny = 40 ,
Vo = 100V.
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